

O Desafio das EPC: Que papel para o PAPA?

Nuno Rocha Pereira Centro Hospitalar e Universitário São João Faculdade de Medicina da Universidade do Porto

By 2050, the death toll could be a staggering one person every three seconds if AMR is not tackled now.

DEATHS ATTRIBUTABLE TO AMR EVERY YEAR

Klebsiella pneumoniae

European Centre for Disease Prevention and Control. Surveillance of antimicrobial resistance in Europe – Annual report of the European Antimicrobial Resistance Surveillance Network (EARS-Net) 2017. Stockholm: ECDC; 2018.

"But I would like to sound one note of warning. Penicillin is to all intents and purposes non-poisonous so there is no need to worry about giving an overdose and poisoning the patient. There may be a danger, though, in underdosage. It is not difficult to make microbes resistant to penicillin in the laboratory by exposing them to concentrations not sufficient to kill them, and the same thing has occasionally happened in the body."

> Alexander Fleming. Penicillin. Nobel Lecture, December 11, 1945

EXHIBIT 6: Correlation between antibiotic use and resistance⁵⁵

Factors that promote antibiotic resistance:

- Bacterial population density in health care facilities
- Inadequate adherence to best infection control practices
- Increase of high risk patient populations

Antibiotic overuse in agriculture

Global travel and tourism (including medical tourism)

- Poor sanitation and contaminated water systems
- Improper antibiotic prescribing in human medicine
- Overprescription of broad-spectrum antibiotics
- Paucity of rapid diagnostic tests to guide proper antibiotic prescribing
- Lack of approved vaccines for drug resistant pathogens

Cantón R, Morosini MI. Emergence and spread of antibiotic resistance following exposure to antibiotics. FEMS Microbiol Rev. 2011, 35: 977-91

Does antibiotic restriction prevent resistance? McGowan JE Jr, Gerding DN.

Emory University School of Medicine, Atlanta, GA, USA. New Horiz. 1996 Aug;4(3):370-6.

Antimicrobial resistance among some hospital organisms has increased to a stage where it can no longer be tolerated. The need for preventive and corrective measures is urgent. There is an association between the use of antimicrobial agents and resistance that is likely causal. Alterations in antimicrobial usage have been shown to affect antimicrobial resistance rates, particularly with use of aminoglycosides. Efforts to improve antimicrobial use through educational efforts alone have been largely ineffective, even when coupled with quality management or clinical guideline aspects. Thus, further work is urgently needed to determine the impact of antimicrobial-use controls. Additional largescale, well controlled trials of antimicrobial-use regulation employing sophisticated epidemiologic methods, molecular biological organism typing, and precise resistance mechanism analysis will be required to determine the best methods to prevent and control this problem and ensure our optimal antimicrobial-use "stewardship." Consideration of the long-term effects of antimicrobial selection, dosage, and duration of treatment on resistance development should be a part of every antimicrobial treatment decision.

Problem	Useful solution	Rating	References
 High level^b of carbapenem-resistant P. aeruginosa 	Reduce ^c fluoroquinolone and/or carbapenem use	BIII	[2,9,35,69–72]
 High level of fluoroquinolone- resistant P. aeruginosa 	Reduce fluoroquinolone use and change primary drug to ciprofloxacin	AI	[9,16,67,69,75–78]
 High level of carbapenem-resistant A. baumannii 	Reduce carbapenem use and assess for clonal problem	AII	[31–33]
 High level of β-lactam resistance in P. aeruginosa 	Reduce extended-spectrum cephalosporin use and replace with piperacillin-tazobactam	BIII	[35]
 High level of ESBL-producing Enterobacteriaceae 	Reduce extended-spectrum cephalosporin use and replace with piperacillin-tazobactam or imipenem-cilastatin or ampicillin-sulbactam	AI	[29,53,55-61]
 High level of gentamicin–tobramycin resistance in Enterobacteriaceae 	Replace with amikacin	AI	[25-27]
7. Concern over presence of VRE	Reduce cephalosporin and fluoroquinolone use and replace with piperacillin-tazobactam	AI	[43-45,62,63]
8. Concern over presence of MRSA	Reduce cephalosporin and fluoroquinolone use, and replace with a β-lactamase inhibitor drug	BIII	[50,53,54,81-84]
9. Concern over presence of C. difficile	Reduce cephalosporin, clindamycin and fluoroquinolone use and replace with: (a) piperacillin-tazobactam or (b) ticarcillin-clavulanate	AI and BIII, respectively, for (a) or (b)	[49,64–66,85–87]

Table 1. Recommendations (with ratings^a) for management of antimicrobial agent resistance

• O que é?

"...we suggest viewing antimicrobial stewardship as a strategy, a coherent set of actions which promote using antimicrobials responsibly. We stress the continuous need for 'responsible use' to be defined and translated into contextspecific and time-specific actions."

"Antimicrobial stewardship programes are a set of interventions that aim to ensure the judicious use of antimicrobials by preventing their unnecessary use, and by providing targeted and limited therapy in situations where they are wanted... refers to how the judicious use of antibiotics can maximize both their current effects and the chances of their being available for future generations"

O.J. Dyar, Clin Microbiol Infect 2017;23:793

Que objectivos?

- ✓ Melhoria dos outcomes para o tratamento e prevenção de infecção
- ✓ Minimizar efeitos adversos e toxicidade da terapêutica antimicrobiana
- ✓ Minimizar o impacto na resistência e outros efeitos ecológicos adversos (ex: C. difficile)

Nathwani D. Hospital Epidemiology and Infection Control, 4th ed. 2012 Doernberg SB et al. Infect Dis Clin N Am 31 (2017) 513-534

Formulary-related Strategies

- Formulary automatic substitution/therapeutic interchange policies
- Formulary restriction
- Formulary restriction with preauthorization
- Formulary review/streamlining

Structural/Process Strategies

• Automatic stop orders

- Checklists
- Clinical decision support systems/computerized physician order entry
- Drug use evaluation/medication use evaluation
- Facilitation of appropriate and timely antimicrobial administration in severe sepsis/septic shock
- General antimicrobial order forms
- Improved antimicrobial documentation
- Scheduled antimicrobial reassessments ("antibiotic timeouts")
- Surgical antibiotic prophylaxis optimization
- Systematic antibiotic allergy verification

- De-escalation and streamlining
- Dose optimization
- Identification of inappropriate pathogen/antimicrobial combinations ("bug-drug mismatch")
- Preventing treatment of noninfectious conditions

- Scheduled antimicrobial reassessments ("antibiotic timeouts")

- duplication
- Therapeutic drug monitoring (with feedback)

Clinical Strategies

- Prospective audit with
- intervention and feedback

• Targeted review of patients with Clostridium difficile infection • Targeted review of patients with bacteremia/fungemia

• Targeted review of redundant therapy or therapeutic

Prescribing Guidance Strategies

- Clinical decision support systems/computerized physician order entry
- Disease-specific treatment guidelines/pathways/algorithms and/or associated order forms
- Empiric antibiotic prescribing guidelines
- Facilitation of appropriate and timely antimicrobial administration in severe sepsis/septic shock
- Intravenous to oral conversion
- Prescriber education

Microbiology-related Strategies

- Antibiograms
- Cascading microbiology susceptibility reporting
- Improved diagnostics
- Promotion of timely and appropriate microbiologic sampling
- Strategic microbiology results reporting

Adaptado de: http://www.publichealthontario.ca/en/BrowseByTopic/InfectiousDiseases/AntimicrobialStewardshipProgram/Pages/ASP-Strategies.aspx

Prevenção da emergência de resistências

O Desafio das EPC: Que papel para o PAPA?

Diminuição das resistências existentes

Limitação da disseminação de resistências

Prevenção da emergência de resistências

O Desafio das EPC: Que papel para o PAPA?

Diminuição das resistências existentes

Limitação da disseminação de resistências

Otimização do tratamento das infeções por EPC

Prevenção da emergência de resistências

O Desafio das EPC: Que papel para o PAPA?

Diminuição das resistências existentes

Limitação da disseminação de resistências

Será que funciona?

	Before AMS program			After AMS program						
	2007	2008	2009	2010	2011	2012	2013	2014	2015	Рь
June)	120	108	107	131	126	130	141	144	153	
	70	72.2	60.8	63.4	65.9	66.2	63.8	63.2	60.1	0.353
	57.9 (17.5)	59.4 (17.4)	57.5 (19.8)	61.7 (15.9)	56.7 (17.9)	59.4 (19.4)	59.5 (19.7)	60.6 (17.9)	60.9 (16.2)	0.366
ICU	16.3 (9.0)	16.9 (9.5)	16.7 (8.6)	18.3 (9.0)	17.1 (9.6)	14.6 (8.0)	16.3 (9.6)	15.5 (9.8)	16.9 (10.2)	0.109
))	11.5 (12.4)	13.4 (14.3)	11.8 (12.5)	9.5 (9.4)	8.7 (8.3)	8.4 (10.8)	8.7 (9.6)	8.3 (11.3)	8.0 (9.5)	<0.0
	12.5	16.7	12.2	13.7	11.1	11.5	14.9	10.4	12.4	0.468
	15.8	32.4	27.1	22.1	12.7	14.6	18.4	2.8	3.3	< 0.0

Hwang H, Kim B. Sci Rep. 2018 Oct 3;8(1):14757.

Jonas Boel, et al. Journal of Antimicrobial Chemotherapy, Volume 71, Issue 7, 1 July 2016, Pages 2047–2051

Figure 1. Cephalosporin use and incidence of HCF-CDI. Left y-axis shows use of cephalosporins and right y-axis shows incidence of HCF-CDI.

Figure 2. Use of iv cephalosporins and HCF-CDI cases attributed to iv cephalosporins. Left y-axis shows use of iv cephalosporins and right yaxis shows HCF-CDI cases attributed to iv cephalosporins.

- 32 estudos observacionais incluídos
- 51% de redução na incidência Gram neg MDR (IR 0,49
- ▶ 48% de redução na incidência de ESBL (IR 0,52; IC 95% 0,27–0,98; p=0,0428)
- ▶ 37% de redução na incidência de MRSA (IR 0,63; IC 95% 0,45–0,88; p=0,0065)
- ▶ 32% de redução na incidência de Clostridium difficile (IR 0,68; IC 95% 0,53-0,88; p=0,0029)

);	IC	95%	0,35-0,	,68; p	0<0,0001)

Effect of antibiotic stewardship on the incidence of infection (1975) and colonisation with antibiotic-resistant bacteria and Clostridium difficile infection: a systematic review and meta-analysis

David Baur*, Berel Primove Gladstone*, Francesco Burkert, Flena Cavara, Federico Foschi, Stefanie Döbele, Evelina Taccor

Background Antibiotic stewardship programmes have been shown to reduce antibiotic use and hospital costs. We aimed to evaluate evidence of the effect of antibiotic stewardship on the incidence of infections and colonisation with antibiotic-resistant bacteria. June 16, 2017

Methods For this systematic review and meta-analysis, we searched PubMed, the Cochrane Database of Systematic Reviews, the Cochrane Central Register of Controlled Trials, and Web of Science for studies published from Jan 1, 1960, to May 31, 2016, that analysed the effect of antibiotic stewardship programmes on the incidence of infection and colonisation with antibiotic-resistant bacteria and Clostridium difficile infections in hospital inpatients. Two authors independently assessed the eligibility of trials and extracted data. Studies involving long-term care facilities were excluded. The main outcomes were incidence ratios (IRs) of target infections and colonisation per 1000 patient-days Department of Internal before and after implementation of antibiotic stewardship. Meta-analyses were done with random-effect models and Metkinet. DZP Partnersh heterogeneity was calculated with the I2 method.

Findings We included 32 studies in the meta-analysis, comprising 9056241 patient-days and 159 estimates of IRs. Antibiotic stewardship programmes reduced the incidence of infections and colonisation with multidrug-resistant Gram-negative bacteria (51% reduction; IR 0-49, 95% CI 0-35-0-68; p<0-0001), extended-spectrum β-lactamaseproducing Gram-negative bacteria (48%; 0·52, 0·27–0·98; p=0·0428), and meticillin-resistant Staphylococcus aureus (37%; 0.63, 0.45-0.88; p=0.0065), as well as the incidence of C difficile infections (32%; 0.68, 0.53-0.88; p=0.0029). Antibiotic stewardship programmes were more effective when implemented with infection control measures (IR 0-69, 0-54-0-88; p=0-0030), especially hand-hygiene interventions (0-34, 0-21-0-54; p-0-0001), than when implemented alone. Antibiotic stewardship did not affect the IRs of vancomycin-resistant enterococci and quinolone-resistant and aminoglycoside-resistant Gram-negative bacteria. Significant heterogeneity between Eeskus Taccontigened and studies was detected, which was partly explained by the type of interventions and co-resistance patterns of the universe target bacteria.

Interpretation Antibiotic stewardship programmes significantly reduce the incidence of infections and colonisation with antibiotic-resistant bacteria and C difficile infections in hospital inpatients. These results provide stakeholders and policy makers with evidence for implementation of antibiotic stewardship interventions to reduce the burden of infections from antibiotic-resistant bacteria

Funding German Center for Infection Research

Introduction

antibiotic-resistant bacteria, restriction of unnecessary stewardship programmes in hospital inpatients.³⁰⁴ , such as auditing. 14 stewardship

Four systematic reviews and meta-analyses hav In view of the increasing number of infections caused by summarised the evidence of the effects of antibiotic antibiotic use and optimisation of infection control Feazel and colleagues" focused on Clostridium difficile measures are of the utmost importance.12 Strategies for infections and showed a reduction of 52% in the optimal antibiotic use are highly recommended among incidence of these infections after implementation of measures to limit the increasing expansion of antibiotic- antibiotic stewardship, although with significant resistant bacterial populations at both hospital and heterogeneity; the sources of heterogeneity were not community levels.14 Antibiotic stewardship programmes explained. Schuts and colleaguest analysed the effect of restriction of specific antibiotics, restriction of treatment these objectives (use of empirical therapy according to duration, and antibiotic cycling or mixing.4 The guidelines, de-escalation of therapy, switching from implementation of these measures has been shown to intravenous to oral treatment, therapeutic drug significantly reduce hospital costs and use of antibiotics.³³ monitoring, restriction of antibiotics, and bedside

www.thelancet.com/infection_Published online june 16, 2017_http://idx.doi.org/10.1016/S1473-3099(17)30325-0

GNB MDR		Events/patient-days						lı (ncidence ratio 95% CI)
		Before	After						-
pisarnthanarak et al ¹⁸	MDR Pseudomonas aeruginosa	13/2889	1/1324	•				0	0.08 (0.00-1.41)
Aarra et al ³¹	Imipenem-resistant Acinetobacter baumannii	23/8421	2/8066					0	09 (0.02-0.39)
pisarnthanarak et al ¹⁸	XDR A baumannii	33/2889	2/1324	-•	-			0	-13 (0-03-0-55)
akesue et al ³²	Metallo-β-lactamase GNB	27/698794	6/635794	_ 	-			0	•24 (0•10–0•59)
ook and Gooch ³⁷	Carbapenem-resistant P aeruginosa	44/220474	13/261318		-			0	.25 (0.13-0.46)
eto et al ⁴²	MDR P aeruginosa	2/4280	1/4217					→ 0	•25 (0•01–5•63)
akesue et al ³²	MDR GNB	39/698794	10/635794					0	-28 (0-14-0-56)
rda et al ³⁶	Meropenem-resistant Acinetobacter spp	28/285606	10/308852					0	.33 (0.16-0.68)
everstein-van Hall et al ⁴⁵	MDR Enterobacteriaceae	9/19142	4/23583	+				0	-36 (0-11-1-17)
eo et al ²³	Carbapenem-resistant P aeruginosa	17/20469	8/21798		•			0	•44 (0•19–1•02)
rda et al ³⁶	Meropenem-resistant P aeruginosa	8/285606	4/308852		•			0	-46 (0-14-1-54)
Aarra et al ³¹	Imipenem-resistant Klebsiella pneumoniae	6/8421	3/8066		•			→ 0	·52 (0·13–2·09)
Aarra et al ³¹	Imipenem-resistant P aeruginosa	15/8421	8/8066		+		_	0	·56 (0·24–1·31)
rda et al ³⁶	Meropenem-resistant A baumannii	45/285606	29/308852	-	+			0	.60 (0.37-0.95)
Neyer et al ³⁴	Imipenem-resistant P aeruginosa	34/13502	33/21420	-	+			0	.61 (0.38–0.99)
eo et al ²³	Carbapenem-resistant A baumannii	10/20469	9/21798	_		•		→ 0	.85 (0.34-2.08)
ou et al ²⁰	Meropenem-resistant P aeruginosa	185/834560	172/883500		-	→		0	.88 (0.71–1.08)
liwa et al ²⁵	Imipenem-resistant Paeruginosa	11/128146	15/113873		_			→ 1	·53 (0·70–3·34)
ubert et al ⁴³	Imipenem-resistant Paeruginosa	49/5100	44/2548			-		↔ 1	·80 (1·20–2·70)
verall				-	\bullet			C	.49 (0.35-0.68)
=76·2%, p=0·000) Antibiotic	0.5	1∙0 ship Antil	1.5 → biotic stewarc	2.0	
				program	me effect	ive progra	amme not eff	ective	

Baur et al. Lancet Infect Dis 2017 Published online

MRSA	Events/patien	it-days	
	Before	After	
Apisarnthanarak et al18	17/2889	1/1324	
Chalfine et al ⁴¹	17/113194	2/153283	
Chalfine et al ⁴¹	123/113194	26/153283	
Smith et al ⁴⁴	105/11979	11/6012	
Frank et al ⁴⁷	68/103573	18/91965	
Schultsz et al ³³	44/2708	19/3384	
Cook and Gooch ³⁷	229/220474	118/261318	
Yeo et al ²³	40/20469	23/21798	
Miyawaki et al ³⁹	213/293655	186/305149	
Arda et al ³⁶	87/285606	85/308852	
Meyer et al ³⁴	127/13502	189/21420	
Niwa et al ²⁵	172/128146	151/113873	
Zou et al ²⁰	196/834560	284/883500	
Aubert et al ⁴³	44/5100	38/2548	
Marra et al ³¹	7/8421	13/8066	
Peto et al ⁴²	1/4280	4/4217	
Mach et al ⁴⁰	1/146886	15/155870	
Overall			
l ² =92·2%, p=0·000			_

0

Baur et al. Lancet Infect Dis 2017 Published online

"In conclusion: **resistance**, especially for MDR Gram-negative bacteria...

...Co-implementation of hand-hygiene improvement interventions with antibiotic stewardship programmes has a synergistic effect and is thus recommended for future antibiotic stewardship planning...

programmes for each specific resistance scenario"

...Antibiotic stewardship programmes have an essential role in combating the development of antibiotic

...Good quality intervention studies are needed to help prioritise the various antibiotic stewardship

- 221 estudos incluídos (58 RCT's)
- ▶ Risco de morte semelhante em ambos os grupos (11%) (RD 0%; IC 95% -1% a 0%; 28 RCT's; 15827 doentes)
- Duração de internamento diminuída em 1,12 dias (IC 95% 0,7-1,54 dias; 15 RCT's; 3834 doentes)
- Diminuição do tratamento antimicrobiano em 1,95 dias (IC 95% 1,67 a 2,22 dias; 14 RCT's; 3318) doentes)
- ▶ Redução de infecções por Clostridium difficile (-48,6%; IC 95% -80,7% a -19,2%; 7 estudos)
- Não demonstrado impacto nas resistências

Interventions to improve antibiotic prescribing practices for hospital inpatients (Review)

Davey P, Marwick CA, Scott CL, Charani E, McNeil K, Brown E, Gould IM, Ramsay CR, Michie S

vey P, Marwick CA, Scott CL, Charani E, McNeil K, Brown E, Gould IM, Ramsay CR, Michie S. to improve antibiotic prescribing practices for hospital inpatien hrane Database of Systematic Reviews 2017, Issue 2, Art. No.: CD003543 OF 10 1002/14651858 CD003543 pub4

ww.cochranelibrary.com

interventions to improve antibiotic prescribing practices for hospital inpatients (Review Copyright © 2017 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

WILEY

- Revisão sistemática (26 estudos):
 - ▶ **27%** (7) com resultados positivos
 - 12% (3) com resultados positivos limitados
 - 27% (7) com resultados dúbios
 - ▶ **15%** (4) com resultados negativos
 - 19% (5) com resultados não interpretáveis

ARTICLE IN PRESS

American Journal of Infection Control and (2018)

State of the Science Review

Are antimicrobial stewardship programs effective strategies for preventing antibiotic resistance? A systematic review

Leandro G, Bertollo^{*}, Diego S, Lutkemeyer, Anna S, Levin PhD

Deparament of Infectious Diseases and Infection Control, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil

Rey Words: Antimicrobial stewardship infection control antibiotic resistance, bacterial review, systematic Background: Antimicrobial stewardship programs (ASPs) have been proposed as a solution for the global burden of antibiotic resistance, despite the lack of evidence on the subject.

Objective: To analyze the role of ASPs in reducing bacterial resistance to antibiotics in hospital settings. **Data sources:** A review in PubMed, Scopus, LILACS, and SciELO databases was performed. The period analyzed was january 1, 2012-january 4, 2017.

Eligibility criteria: Studies that related ASPs to bacterial resistance. Data extraction: All studies that did not focus on ASPs were removed. Antifungal and antiviral programs were excluded.

Results: Only 8 studies had quasi-experimental designs, and none were controlled trials. ASP strategies and microorganism-antibiotic pairs evaluated varied widely. Seven studies were classified as presenting clearly positive results, 3 had limited positive results, 7 had doubtful results, 4 had negative results, and 5 had noninterpretable results. The implementation of new infection control practices occurred in 7 studies. **Limitations:** There are yet few studies on this matter, and most of them have inadequate study designs. Great heterogeneity between study features was detrimental to drawing evidence-based conclusions. **Conclusions:** There is no solid evidence that ASPs are effective in reducing antibiotic resistance in hospital settings. We uphold the need for more studies with appropriate study designs, standardized ASP interventions targeting common microorganism-antibiotic pairs, and avoiding simultaneous implementation of infection control practices.

© 2018 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

The antibiotic era began in 1923 with the discovery of penicillin by Alexander Fleming. Antimicrobial resistance was already a problem of global public health in the 1940s, a few years after the introduction of antibiotics into clinical practice. The World Health Organization, together with member states and collaborators, produced in 2014 for the first time a document that portrays the exact magnitude of the situation concerning bacterial resistance in the world.¹ The study clearly states that resistance to common bacteria has reached alarming levels. According to the World Health Organization report, groups of key antibiotics no longer work for half of the patients in several countries: carbapenems, which are administered to treat infections caused by *Klebsiella pneumoniae*, and fluoroquinolones, indicated for treatment of urinary

 Address correspondence to Leandro G. Bentollo, Rua Oscar Freire, 2371/72, São Paulo, SP CEP 05409-012, Brazil.
 E-m di address: bentolloleandro@gmail.com (LG. Bentollo).

Conflicts of interest: None to report.

0196-6553(© 2018 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved. https://doi.org/10.1016/j.ajic.2018.01.002

infections, have been proven ineffective against pathogens in >50% of patients.¹ The emergence of antimicrobial resistance is a threat to public health.^{2,3}

Behind this scenario lies the extraordinary genetic ability of these microorganisms. A wide range of biochemical and physiologic mechanisms may be involved in the development of bacterial resistance,⁴ and the lack of knowledge about the complex relationship between pathogen exposure to drugs and the development of resistance justifies the few advances in resistance prevention and control. The most obvious and probably most costly example regarding public health (morbidity and mortality) concerns bacteria. In 2009, databases⁵ listed >20,000 potential resistance genes of 400 different types.

The development of bacterial resistance to antimicrobial agents is triggered by the selection of resistant organisms⁶ during individual or populational antibiotic-based treatments.⁷⁻⁰ Another form of contact of individuals with resistant species is through agriculture: because antibiotics are used as growth supplements in livestock, ²¹⁰ resistant bacteria of these animals may reach consumers through consumed animal products.¹⁰

"Conclusion:

There is no solid evidence that ASPs are effective in reducing antibiotic resistance in hospital settings... need for more studies with appropriate study designs and standardized ASP interventions... Implementing new infection control measures simultaneously with ASPs should be avoided because it may be a major confounding factor that was present in a substantial proportion of studies."

ARTICLE IN PRESS

American Journal of Infection Control 🗰 (2018) 🚥 🚥

State of the Science Review

Are antimicrobial stewardship programs effective strategies for preventing antibiotic resistance? A systematic review

Leandro G, Bertollo*, Diego S, Lutkemeyer, Anna S, Levin PhD Department of Infectious Diseases and Infection Control, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil

Rey Words: Antimicrobial stewardship infection control antibiotic resistance, bacterial review, systematic Background: Antimicrobial stewardship programs (ASPs) have been proposed as a solution for the global burden of antibiotic resistance, despite the lack of evidence on the subject.

Objective: To analyze the role of ASPs in reducing bacterial resistance to antibiotics in hospital settings. **Data sources:** A review in PubMed, Scopus, LILACS, and SciELO databases was performed. The period analyzed was january 1, 2012-january 4, 2017.

Eligibility criteria: Studies that related ASPs to bacterial resistance. Data extraction: All studies that did not focus on ASPs were removed. Antifungal and antiviral programs were excluded.

Results: Only 8 studies had quasi-experimental designs, and none were controlled trials. ASP strategies and microorganism-antibiotic pairs evaluated varied widely. Seven studies were classified as presenting clearly positive results, 3 had limited positive results, 7 had doubtful results, 4 had negative results, and 5 had noninterpretable results. The implementation of new infection control practices occurred in 7 studies. **Limitotions:** There are yet few studies on this matter, and most of them have inadequate study designs. Great heterogeneity between study features was detrimental to drawing evidence-based conclusions. **Conclusions:** There is no solid evidence that ASPs are effective in reducing antibiotic resistance in hospital settings. We uphold the need for more studies with appropriate study designs, standardized ASP interventions targeting common microorganism-antibiotic pairs, and avoiding simultaneous implementation of infection control practices.

© 2018 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

to public health.2,3

different types.

infections, have been proven ineffective against pathogens in >50%

of patients.1 The emergence of antimicrobial resistance is a threat

Behind this scenario lies the extraordinary genetic ability of these

microorganisms. A wide range of biochemical and physiologic

mechanisms may be involved in the development of bacterial

resistance,4 and the lack of knowledge about the complex relation-

ship between pathogen exposure to drugs and the development of

resistance justifies the few advances in resistance prevention and

control. The most obvious and probably most costly example regarding public health (morbidity and mortality) concerns bacteria.

The development of bacterial resistance to antimicrobial agents is triggered by the selection of resistant organisms⁶ during individual or populational antibiotic-based treatments.⁷⁻⁰ Another form of contact of individuals with resistant species is through agricul-

ture: because antibiotics are used as growth supplements in

livestock,210 resistant bacteria of these animals may reach consum-

ance genes of 400

12009_databases⁵ listed 520,000 potential m

ers through consumed animal products.10

???

The antibiotic era began in 1923 with the discovery of penicillin by Alexander Fleming. Antimicrobial resistance was already a problem of global public health in the 1940s, a few years after the introduction of antibiotics into clinical practice. The World Health Organization, together with member states and collaborators, produced in 2014 for the first time a document that portrays the exact magnitude of the situation concerning bacterial resistance in the world.¹ The study clearly states that resistance to common bacteria has reached alarming levels. According to the World Health Organization report, groups of key antibiotics no longer work for half of the patients in several countries: carbapenems, which are administered to treat infections caused by *Klebsiella pneumoniae*, and fluoroquinolones, indicated for treatment of urinary

 Address correspondence to Leandro G. Bentollo, Rua Oscar Freire, 2371/72, São Paulo, SP CEP 05409-012, Brazil.
 B-mdil address: bentolloleandro@gmail.com (L.G. Bentollo).

Conflicts of interest: None to report.

0196-6553/© 2018 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved. https://doi.org/10.1016/j.ajic.2018.01.002

Prevenção da emergência de resistências

O Desafio das EPC: Que papel para o PAPA?

Diminuição das resistências existentes

Limitação da disseminação de resistências

Será que funciona?

Estratégias implementadas:

- Coorte de doentes
- Intensificação de educação
- Optimização de higiene de mãos e limpeza
- Promoção de regimes "poupadores de carbapenemos
- Revisão de todas as prescrições de carbapenemos em 48h

Viale P et al. Infect Dis Ther (2015) 4 (Suppl 1):S65–S83

AMS e ERC em Portugal...

Consumo de carbapenemos

K. pneumoniae susc. reduzida a carbapenemos

AMS e ERC em Portugal...

Consumo de carbapenemos

K. pneumoniae susc. reduzida a carbapenemos

Porquê?

Determinantes da resistência

	Effect on resistance rate of 1 SD increase in each explanatory variable (logit)	p value
Usage (standardised)	-0.88	0.64
Governance index	-7.89	0.025
Health expenditure index	-5·54	0.093
GDP per capita (standardised)	6.62	0.030
Education index	7.93	0.058
Infrastructure index	-16.84	0.014
Climate index	2.01	0.33
R ²	0.54	

GDP=gross domestic product. R²=coefficient of determination.

Table 2: Effect of changes in indices on the resistance of Escherichia coli to third-generation cephalosporins and fluoroquinolones

Usage (standardised)
Governance index
Health expenditure index
GDP per capita index (standardised)
Education index
Infrastructure index
Climate index
R²
GDP=gross domestic product. R

Effect on resistance rate of p value 1 SD increase in each explanatory variable (logit)

2.36	0.070
-11·18	<0.0001
-6.34	0.0065
3.36	0.11
8.59	0.0035
-13.24	0.0052
-0.25	0.86
0.75	

²=coefficient of determination.

Table 3: Effect of changes in indices on the aggregate resistance rate

Anthropological and socioeconomic factors contributing to 🐴 🖲 global antimicrobial resistance: a univariate and multivariable analysis

Peter Collignon, John J Beggs, Timothy R Walsh, Sumanth Gandra, Ramanan Laxminarayan

Summar

Background Understanding of the factors driving global antimicrobial resistance is limited. We analysed antimicrobial resistance and antibiotic consumption worldwide versus many potential contributing factors.

Methods Using three sources of data (ResistanceMap, the WHO 2014 report on antimicrobial resistance, and ACT Pathology, Carborn contemporary publications), we created two global indices of antimicrobial resistance for 103 countries using data Houpital Canberra, ACT, from 2008 to 2014: Escherichia coli resistance-the global average prevalence of E coli bacteria that were resistant to Matical School, Australian third-generation cephalosporins and fluoroquinolones, and aggregate resistance-the combined average prevalence NationalUniversity, Woden, of E coli and Klebsiella spp resistant to third-generation cephalosporins, fluoroquinolones, and carbapenems, and ACT, Autorata meticillin-resistant Staphylococcus aureus. Antibiotic consumption data were obtained from the IQVIA MIDAS (ProfP Collignor); Monuech database. The World Bank DataBank was used to obtain data for governance, education, gross domestic product Autrala()[Begg1PhD); (GDP) per capita, health-care spending, and community infrastructure (eg. sanitation). A corruption index was MicrobiologyResearch, School derived using data from Transparency International. We examined associations between antimicrobial resistance and of Medicine, Cardiff University potential contributing factors using simple correlation for a univariate analysis and a logistic regression model for a Cardiff, UK ()vol TR Wakh DSc); Center for Disease Dynamics, multivariable analysis.

Findings In the univariate analysis, GDP per capita, education, infrastructure, public health-care spending, and (S Gandra MO); Conter for antibiotic consumption were all inversely correlated with the two antimicrobial resistance indices, whereas higher temperatures, poorer governance, and the ratio of private to public health expenditure were positively correlated. In (Lauring and Phil); and the multivariable regression analysis (confined to the 73 countries for which antibiotic consumption data were Princeton Environmental available) considering the effect of changes in indices on E coli resistance (R2 0-54) and aggregate resistance (R2 0-75), Invitore, Prinoton, NJ USA better infrastructure (p=0.014 and p=0.0052) and better governance (p=0.025 and p<0.0001) were associated (R Laurinarayan) with lower antimicrobial resistance indices. Antibiotic consumption was not significantly associated with either antimicrobial resistance index in the multivariable analysis (p=0.64 and p=0.070).

Interpretation Reduction of antibiotic consumption will not be sufficient to control antimicrobial resistance because Autrala contagion-the spread of resistant strains and resistance genes-seems to be the dominant contributing factor. poter collignon@actgov.au Improving sanitation, increasing access to clean water, and ensuring good governance, as well as increasing public health-care expenditure and better regulating the private health sector are all necessary to reduce global antimicrobial resistance.

Funding None.

Copyright @ 2018 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY-NC-ND 4.0 license.

Introduction

Antimicrobial resistance is a substantial global problem lower than in high-income countries, supports this across countries regardless of income level and imposes idea. NAM Quality of governance, public spending on a large dinical and financial burden.24 Multidrug- health, poverty (ie, gross domestic product [GDP] per resistant bacteria that develop in any country or region person), education, and community infrastructure ar have been shown to spread rapidly, 41 and antimicrobial known to affect health outcomes. 1244 However, preresistance is recognised as a so-called One Health vious studies have been limited in their assessment of problem." Although the use and overuse of antibiotics antimicrobial resistance and have not been extrapoare primary drivers of the emergence and maintenance lated to a global scale. Similarly, little is known about of antimicrobial resistance, other factors contribute to the effect of dimate on the prevalence of antimicrobial its increased prevalence.4274 The observation of higher resistance. antimicrobial resistance rates in several low-income The dissemination of antimicrobial resistance can be

which per-person consumption of antibiotics is much

countries and middle-income countries (LMICs), in described as a two-step process. First, de-novo mutations

LancetPlanetHealth 2018 2: 0398-405 See Commont page #376

Australia (Prof P Collignon PhD Imititute, Melbourne, VIC. Economics& Policy,

Washington, DC, USA Disease Dynamics, Economics & Policy, New Delhi, India

Correspondence to: Prof Peter Collignon, Medical School, Australian National University Woden, ACT 2606,

O Desafio das EPC: Que papel para o PAPA?

Prevenção da emergência de resistência
 Limitação da disseminação de resistências
 Diminuição do nível de resistências atuais

Importante

O Desafio das EPC: Que papel para o PAPA?

- Prevenção da emergência de resistência
- Limitação da disseminação de resistências
- Diminuição do nível de resistências atuais
- Contexto de estratégias multimodais
- Integração com estratégias de prevenção e controlo de infecão
- Reconhecimento da complexidade das resistências

Decisivo **Fundamental**

Knowing is not enough; we must apply. Willing is not enough; we must do.

Goethe

O Desafio das EPC: Que papel para o PAPA?

Nuno Rocha Pereira Centro Hospitalar e Universitário São João Faculdade de Medicina da Universidade do Porto